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ABSTRACT

This thesis examines radio propagation conditions over trans-equatorial (TE) paths.
The study precedes Project PENEX, a field experiment to measure and collect calibrated
HF skywave signal strength data for polar, equatorial, and near-vertical incidence
propagation paths. PENEX will benchmark the absolute accuracy of the signal-to-noise
models in the MEDUSA propagation model now being developed by the Naval
Command, Control and Ocean Surveillance Center.

Since only minimal information is available about TE paths, 5 comprehensive
review of the published literature on TE experiments was completed, with emphasis on
TE paths between magnetic conjugate points. Data from such paths have revealed the
presence of unusual propagation modes which are not predicted by standard propagation
programs such as PROPHET, IONCAP, and AMBCOM. The review of the literature
revealed that Stanford Research Institute (SRI) published measured data on a TE path
between the Pacific islands of Kauai and Rarotonga.

A comparison was made between the SRI data and predictions for the same path
to assess the usefulness of current prediction programs for TE paths. The SRI AMBCOM
program was used for this comparison. As expected, sizeable differences were found
Setween the predicted and measured results, especially during times when unusual
propagation modes were present. This suggests that prediction programs should be

modified to include the observed TE modes. |
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I. INTRODUCTION

A. GENERAL

Radio propagation aspects of trans-equatorial (TE) paths are examined in this thesis.
This study precedes a series of actual propagation measurements under Project PENEX
to be conducted in 1993-94 by the Naval Secunty Group Command, the Naval
Command, Control, and Ocean Surveillance Center, and the Naval Postgraduate School.

Since very little information is «ivailable in textbooks and standard documents about
HF TE propagation, a comprehensive review of the hterature was completed A
bibliography of pertinent documents is provided at the end of the thesis. Information
obtained from documents in the bibliography were of interest and value in identifying TE
information and experiments.

A number of experiments have been conducted over trans-equatorial paths, and
many of the researchers involved have reported unusual TE propagation conditions.
These unusual conditions have included propagation of unusual modes, at unexpected
frequencies and anomalously high signal amplitudes. One particular experiment was of
special interest, since one of the paths involved will most likely be the TE path for the
PENEX study. Stanford Research Institute (SRI) conducted a series of experiments on

TE paths in the Pacific region during the nuclear test series of 1962. The path from

Kauai in the Hawaiian Islands to Rarotonga in the Cook Islands was of special interest




because the two islands arc situated very nearly at magnetic conjugate locations. Sounder
data from this path were published by SRI {Ref. 1].

A comparison was made between this sounder data and a standard propagation
prediction program. While several prediction programs could have been used for this
purpose (e.g.. PROPHET, IONCAP and others), the SRI AMBCOM program was used
in this study.

This thesis is divided into five chapters. The first chapter provides an overview of
Project PENEX, and a brief description of the morphology of the TE ionosphere as it
applies to the AMBCOM program. The second chapter will describe the AMBCOM
algorithms.  Chapter III will characterize the 1962 SRI measured data and the
experimental setup. The fourth chapter will compare AMBCOM predictions with SRI's
measured data.  Conclusions and recommendations are in Chapter V. The interested
researcher will find a bibliography of the equatorial ionosphere and TE propagation at the

conclusion.

B. PROJECT PENEX

PENEX is an acronym for Polar, Equatorial. and NVIS (Near-Vertical Incidence
Skywave) Experiments. The objective of the PENEX experimental program is to measure
and collect calibrated HF skywave signal strength data for the purpose of benchmarking
the absolute accuracy of the signal to noise (S/N) models in the MEDUSA propagation

models. now being developed by the Naval Command, Control, and Ocean Surveillance

Center. Based on ten years operational experience and numerous comparisons to




experimental data, the radiowave propagation models in PROPHET and MEDUSA
provide very accurate median predictions for mid-latitudes. The same propagation modeis
perform only marginally in predicting short term signal variations. In fact none of the
existing propagation codes in use do a good job.

PENEX researchers will target the propagation characteristics in auroral and polar
cap regicns, trans-equatorial (TE) regions, and the propagation mode known as Near-
Vertical Incidence Sk;ﬂve (NVIS). Project PENEX is a 2-year study (1993-1994) of
HF propagation, unique in utilizing a wide-band spread spectrum matched filier technique.
Employing direct-sequence spread spectrum modulation techniques, GPS location data,
and a rubidium clock, researchers expect the data generated to be very highly correlated
The wideband signal (about 40 kHz) approach 1s attractive and offers the following
features

1. Absolute signal recognition in almost any kind of interference environment (spread
spectrum processing gains > 800).

2. Sufficient time resolution (12.5 us time delay resolution) to identify each mode of
propagation and the power density in that mode.

3. Significantly reduced output power requirements (< 100W).

The TE portion of the experiments, the subject of the current thesis, is scheduled

to be conducted in 1993-94 with a transmitter located on Kauai in the Hawaian Islands

and a receiver on Rarotonga in the Cook Islands.




C. THE TRANS-EQUATORIAL IONOSPHERE
1. Geomagnetic and Solar Parameters

a. The Geomagnetic Coordinate System

The Earth's magnetic field may be approximated by an earth-centered
dipole directed southward and inclined at about 11.5° to the earth's rotational axis.
Presently, the northern pole of the dipole is located approximately at 81° N, 84.7° W
using the geographic coordinate system [Ref. 2: p.60). When studying or modeling the
ionosphere, the geomagnetic coordinate system is commonly used to map the ionosphere
to an earth-bound coordinate system. The geomagnetic coordinate system is based upon
the geographic location of the earth's magnetic poles. The longitudinal origin for this
system is the meridian line which passes through the north and south geomagnetic poles

and through the geographic south pole. The two systems are related with the equations

[Ref. 3: p.40]

sin ® = sind sinp, + cosd cosd, cos(A - A), )
and sin A = cos¢ sin(A - A;)/ cos D, )
where

¢, = geographical latitude for the northern geomagnetic pole,
A= geographical longitude for the northern geomagnetic pole,
¢ = geographical latitude,

A = geographical longitude,

¢ = geomagnetic latitude and




A = geomagnetic longitude
Although the AMBCOM program makes the geographic-to-geomagnetic coordinate
conversion for the user, an understanding of the geomagnetic coordinate system is useful

in understanding the model.

b. Geomagnetic Activity Indices

AMBCOM uses the three-hour K, index of worldwide magnetic
disturbance to specify the current state of the earth's magnetic field. This index is based
upon local K indices which are quasi-logarithmic values prepared at twelve selected
observatories worldwide to describe the condition of the planetary magnetic field at each
site. These local K values are corrected to calculate the planetary K, index. The K|
index is calculated at three hour intervals for each of eight periods per day. The K|
indices range from zero, the least disturbed state, to nine which represents the most
disturbed magnetic field. The K indices used for this thesis are published in the Journal
of Geophysical Research [Refs. 4,5,6,7] and are listed in Appendix B. For this study the
indices ranged from zero to seven, indicating that the geomagnetic field varied from a

nondisturbed state to a considerably disturbed state.

c. Sunspot Number
Sunspots, related to the solar flux, are characterized by strong magnetic
fields which may approach 0.4 Tesla. They have approximately an 11-year periodicity

in occurrence. Their occurrence was measured by the Wolf, or Zurich sunspot number,

R, [Ref. 2: p29),




R, = k(10g + 5) 3)
where
g = number of sunspot groups observed,
s = number of observed individuai spots and
k = correction factor.
Daily values of R, used in the present study were also derived from the
Journal of Geophysical Research [Refs. 4,5,6,7] and are listed in Appendix B. The R,
number was discontinued in 1981 in favor of the International Sunspot Number, R, [Ref.
2: p. 44].
2. lonospheric Layers
Radio waves may be refracted or reflected as they encounter 1onospheric layers
during propagation. As rays move through various areas of the atmosphere, graduval
changes occur in the speed of the waves as the temperature, air density, and levels of
ionization change. On frequencies below 30 MHz, long distance communication is the
result of refraction of the wave in the ionosphere, where free ions and electrons exist in
sufficient quantity to affect the velocity of wave travel. Depending on the frequency used
and the time of day, the ionosphere can support communications from very short ranges
of less than 100 km (Near Vertical Incidence Signals - NVIS) to distances greater than
9500 km.
Ionization of the upper atmosphere is attributed to ultraviolet radiation from
the sun, and results in several layers of varying densities at various heights surrounding

the Earth. Each layer has a central region of maximum electron density, which tapers



off both above and below that altitude. The ionospheric layers that most influence HF
communications are the D, E, E,, F,, and F, layers (Fig. 1). Of these, the D layer, with
alnitudes of 50-90 km, absorbs signals passing through it. The lowest region usefﬁl for
returning radio signals to the Earth at HF is the E layer, with altitudes of 80-150 km. Its
average height of maximum ionization is about 100 km. The layer refracts waves only
in the presence of sunlight. Ionization is greatest around local noon, and practically

disappears after sundown.

AT DAYTIME IONOSPHERE | NICHTTIME IONOSPHERE
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Figure 1. The lonosphenic Layers [Frorﬁ Ref. 8)




The sporadic-E region, E, consists of relatively dense patches of ionization that drift
around from 90-130 km above the Earth. Its effects become prominent above 21 MHz
and into the VHF region.

The region of 1onization mainly responsible for long distance communication
is the F-layer. Its altitudes of ionization range from 150-600 km. It ionizes very rapidly
at sunrise, reaching peak electron density early in the afternoon at the middle of the
propagation path. The tonization decays very slowly after sunset, reaching the minimum
value just before sunrise. During the day, the F region is split into two layers, the F. and
the F,. The F, layer is usually not an important propagation medium unless it supports
the only mode to propagate. Its refracting heights are between 150-200 km, forming and
fading with the passage of the sun. After sunset, the F, layer decays and is replaced by
a broadened F, layer, the primary medium supporting HF communications. The thickness
of the layer ranges from 80 km during the day to a broad 150 km about 320 km above
the Earth at night.  The maximum range of a single hop off the F, layer is about 4000
km. [Ref. 8]

Traditionally, the ionospheric layers have been characterized as well-behaved
stratified layers. From very high resolution measurements of the medium, it is now
widely accepted that the layers are in continual horizontal and vertical motion. Periods
of bigh solar activity, with their impact on the ionosphere, often result in unusual

propagation modes.



3. Sporadic E (E))

Sporadic E is a thin reflecting layer in the 1onosphere which comes and goes
sporadically at E-region heights. The most important aspect of E, is the maximum
electron density or cnticzl frequency. f E,, and its daily and seasonal variations. [Ref. 8:
p.29]

Low-latitude or equatorial E, is basically 2 daytime phenomenon with little
seasonal variation. Near the geomagnetic equator the critical frequency fE, exceeds S
MHz for 90% of the daylight hours. Equatorial E, 1s due to a plasma instability caused
by the high electron dnft velocity. It is patchy and transparent, but seems to be a useful
reflector on long TE circuits, making it possible to get higher MUFs than would be
expected for normal propagation [Ref. 8: p.125].

Variations of the 1onosphere at low latitudes are so strongly influenced by the
earth’s magnetic field, that 1t is usually more instructive to ccnsider how the ionosphere
varies with geomagnetic latitude or with dip angle of the earth’s magnetic field rather than

within a geographic framework.

4. Trans-equatorial Propagation (TEP)
In low-latitude ionospheres, the "fountain effect” redistributes electrons, moving
them from the equator north and south to magnetic latitudes of 10° to 20°. The
electromagnetic field causes electrons to drift upwards, encountering the horizontal lines

of force of the earth's magnetic field. Electrons diffuse down these field lines to reenter

the main body of the ionosphere where the field lines cut through the F region. This




causes large clumps of electrons at latitudes 10° to 20° from the magnetic equator. These
clumps are the peaks or "crests" of the equatorial or Appleton anomaly [Ref 8: p.30)

These crests are most developed in the late aftermoon and early evening, during
the equinoxes, and at solar maximum. Their critical frequencies, f,F,, can exceed 20
MHz as compared to 10 MHz at the equator. The height of maximum electron density,
h,F.. is less at the crests than at the equator. The significant change with latitude of fF,
and h F, is difficult to predict and may be responsible for some of the interesting
propagation modes observed in the TE environment. [Ref. 8: p.30]

Discoveredin 1947 by radio amateurs, trans-equatorial (TE, propagation occuirs
on circuits which cross the equator, more or less at right angles, and have MUFs
(maximum usable frequency) higher than the normal multihop modes. Stations attempting
TE contacts must be nearly equidistant from the geomagnetic equator. Two types of TE
propagation depend on different features of the equatorial ionosphere for their
characterization [Refs. 9,10,11,12]). These are afternoon-type TE propagation (A-TEP)
and evening-type TE propagation (E-TEP). Both types have been observed

simultaneously on some circuits around 2000 local timne [Ref 8. p.126].
a. Afternoon-type TEP
A-TEP has the following characteristics:
»  MUF greater than the normal 2F MUF, i.e., greater than 40-50 MHz.

. peak occurrence from 1700-1900 local time, near the equinoxes and at solar

maximum.

. path lengths of greater than 6000 km.

10




+  strong steady signals with low fading rates and small doppler spraad

Several theoretical models have been proposed in the past to describe the
propagation mechanism in TEP circuits. Initially a double refraction scheme from the
ionosphenc crests was proposed [Ref. 13).  Although this model explains quite
satisfactorily the A-TEP phenomena, it fails to predict the E-TEP basic characternistics
[Refs. 9, 14).

Raytracing algonthms [Ref. 15] have determined the propagation mode
for these signals is a "super mode” or FF mode, where the signal is reflected twice by the
F layer, on opposite sides of the equator, without a ground reflection. Figure 2 illustrates
this super mode, which is dependent upon the electron density concentratons in the
anomaly cests already discussed. The crests occur at about 15° dip angle north and south
of the magnetic equator where h,F, is at a minimum. Therefore, a ray leaving a suitably

placed transmitter can be reflected from the first crest in a direction to miss the Farth and
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Figure 2. The "Super-Mode" or FF mode responsible for A-TEP [From Ref. 8]
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strike the 1onosphere at the opposite crest, before reflection back 10 the receiver. The
MUF would be higher than the normal 2F MUF since the ionosphere at the crests is tilted
upwards towards the magnetic equator, giving rise to larger angles of incidence. The
MUFs are also higher because the critical frequencies are ;o s n the crests.
Maximum observed frequencies (MOF) for this super mode can exceed 50
MHz. The high signal strengths are the result of focussing effects as rays arrive from a
large range of elevation angles Signals also pass through the absorbing D region only
twice, as opposed to four times for a 2F mode, and are, therefore, less attenuated. This
supermode occurs most frequently during equinoxes at solar maximum, and then not every

day. Its occurrence depends on how the crests developed for a specific day.
b. Evening-type TEP

E-TEP usually supports higher frequencies than A-TEP and has different

characteristics:

eck sccurrence from 2000-2300 local time, near equinoxes and near solar

«  high signal strengths but with deep and rapid fading, and a large doppler
spread, which can exceed 40 Hz.
. path lengths shorter than A-TEP, about 3000-6000 km.

*  higher MOFs than A-TEP, can be greater than 100 MHz.

Based on measurements of elevation angles and group delays on a circuit

between Japan and Australia a waveguide model has been suggested for the E-TEP [Ref.
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16] The guiding of high frequency waves through field aligned irregularities has been
examined theoretically by Nielson [Ref. 17], and this theory has been extended by using
numerical techniques to explain TEP phenomena by Heron and others [Ref 18] A
"whispenng gallery" mode has also been considered to descnbe TEP (Ref. 19]. Data
gathered for the fine structure of ionosphere has shown that there are elongated
irregularities aligned with the geomagnetic field lines in the equatonal ionosphere [Ref.
20). These are tubular shape depletion regions inside the equatonal ionosphere extending
on both sides of the magnetic equator at least from 5° to 10° (magnetic dip). [Ref. 14]
The propagation mode for E-TEP is probably the "whispering gallery" or
“field-guided" mode. Range spreading on evening ionograms indicate that the equatorial
ionosphere is threaded with "empty" tubes aligned along magnetic field lines where the
electron density is much lower than that of the surrounding ionosphere. Figure 3 shows
that the propagation takes place by rays skidding around the walls of the tube, bouncing

off the walls, and emearging at the far end cf the tube [Ref. 21

Figure 3. The Field-guided mode responsible for E-TEP[From Ref. 8]
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MOFs have been noted over 100 MHz, arising from very high angles of
incidence. Large doppler shifts would be caused by the upward movement of the tubes.
which rise rapidly to the top of the ionosphere after their creation near the base. The best
circuits to support this theory place the transmitter tangential to the earth's magnetic field
so rays commence at the altitude to enter the tubes. Highest MUFs would be achieved
when the receiver is similarly placed. The circuit, therefore, should be symmetric about
the magnetic equator, with transmitter and receiver located at magnetic conjugate points,
as is the case with the Kauai-Rarotonga path. Like A-TEP, E-TEP is unpredictable night

to night.
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II. THE AMBIENT COMMUNICATIONS MODEL (AMBCOM)

A. INTRODUCTION

This chapter provides a brief description of applicable portions of the AMBCOM
program. Details of the complete program and code are contained in the user's guides
published by SRI International [Refs 22,23,24).

AMBCCM was designed for batch processing using card images as input. Separate
programs support each of the function areas modelled, i.e., the ionosphere model is
generated by a program which passes its data to another program for calculating
raytracing curves. The system flow is first explained followed by the programs and inputs

which generated the TE data for the Kauai-Rarotonga path.

B. SYSTEM FLOW

The AMBCOM system is a multiprogram batch system written in FORTRAN and
was executed on a VAX 3100 workstation at NPS. Programs NATGEN, RAYTRA, and
COMEFF were used to generate the TE data, as shown in Figure 4. Data are passed
between these programs by means of saved data files [Ref. 22: pp.107-155].

The execution input streamns were constructed for each of the 123 days in the period
of interest, July-October 1962. A file of 57 lines of code comprising the input streams
for NATGEN, RAYTRA and COMEFF was executed successively for each day. In order

to obtain a complete 24-hour table of the spectrum of interest, each day's input file
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Figure 4. AMBCOM System Flow [From Ref. 25]

included as a parameter the average of the eight daily K, indices (App. B). Total

execution time for the 123 day campaign was three and half hours.

C. NATGEN

1. Overview

The purpose of NATGEN is to model the ionosphere along the
communications path between two points. NATGEN builds a model of the F,, F,, and
E layers at control points along the path. The control points are evenly spaced at 100 km
increments with a maximum of 41 control points for paths longer than 4000 km. The
control points are not necessarily located at the signal reflection points since raytracing
is performed in RAYTRA. [Ref.22: pp.23-24]

NATGEN begins by reading ionospheric coefficients provided by the Institute

for Telecommunications Sciences (ITS) in Boulder, Colorado, based upon the month, day,
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and the current sunspot number (input stream variables). AMBCOM uses the ITS Blue
Deck (a reference to earlier coefficient files that were issued on color coded computer
cards) as the starting point for modeling the F,, F,, and E layers at each control point.
Additional parameters c.:cribing atmospheric noise, ground conductivity, and ground
permittivity =z'nng the path are read and passed to RAYTRA. [Ref 22: p.23)

Trke semith'cknesses, heights of maximum ionization, and the c¢ritical
frequencies for the F,, F,, and E layers at each of the control points are passed as outputs
from NATGEN. ITS upper, median, and lower decile values for sporadic E critical
frequencies are passed to RAYTRA which performs all E, calculations. NATGEN also
passes on the location of the transmitter and receiver sites, the time of year, time of day,
the current K, index, the sunspot number, distance between control points, the number of

control points, and the path length. [Ref.23: pp.123-124]

2. Layer modeling

The ITS ionosphere provides the vertical incident critical frequency (/) for the
E layer, the F, layer, and sporadic E. The E layer critical frequency (f,£) is always set
to the median decile values. For the sporadic E and the F, layers, the upper, median, and
lower decile values rep.esent the critical frequencies 90%, 50%, and 10%, respectively,
of the days for a given time and month [Ref. 26: p.89]. NATGEN sllows the user to
choose which of the F, layer values will be used as the F, critical frequency (f,F,) for all
ionospheric calculations. The default £F, value is the m:dian decile number, and was

used in this study. Two additional parameters for the F, layer are the ratio of the

17




semithickness of the layer (y,) to the height of maximum density (h,) and the maximum
usable frequency (MUF) for a 3000 km path (M3000). [Ref 22: p 25}

Using these coefficients, AMBCOM models the ionosphere at the control
points. The F,, F, and E layers are represented as three parabolic layers with the values
for the F, layer derived from the F, and E layer models. The height and semithickness
of the E layer are set at 115 km and 25 km respectively. The F, layer height is calculated
using the ITS coefficients in a two step process. First the peak height of the F, layer
(HP;,) is calculated using the Shimazaki equat.on {Ref. 22: p.26]

HP,.= (1490/M3000) -176 (@)

This value 1s corrected for signal retardation with a height factor (ah) equation [Ref. 22:
p.26]

ah = [ffIn{(fE+DAEAE-1)) -2y, (5)
where
ah = the height error,
f_ = the critical frequency of the layer,
f = the transmitted frequency and
y. = the semithickness cf the layer.
The ah factor is then subtracted from HP;, to produce a corrected height for the F, layer.

The F, layer parameters are not represented by ITS data but are calculated
using the E and F, layer parameters. The F, layer must overlap the F, layer by half of
its own semithickness with the bottom of the F, layer set at 130 km. The critical

frequency of the F, layer is calculated based upon the critical frequency of the E layer
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(f.E). In the event that the F, layer critical frequency is lower than that for F, . f.F, is

set to 0.695. [Ref. 22: p. 27]

3. NATGEN Input Variables

AMBCOM s a batch system in which an input stream controls the execution
of the system and 1. ‘hles a series of 80 column computer cards. AMBCOM was
originally designed during the 1970s when card input systems still predominated [Ref.
22: p.15). Figure § is an example of statements used to execute NATGEN. The ASSIGN
statements provide NATGEN access to the ITS file (ESSABLU.DAT), the conversion
tables for the geomagnetic coordinate system (RAGCOT.DAT), two output files
(IONOS.DAT and NOISE.DAT), and execution control cards one through four.

AMBCOM provides a large amount of flexibility in the control of data
production. NATGEN models the ionosphere along any propagation path at any hourly
time increment specified by the numbered control cards. The AMBCOM user defines the
problem by specifying the transmitter and receiver locations, the sunspot number, the K
index, and the time increment.

Control parameters weie chosen to model the ionosphere, as closely as
possible, to the 1962 SRI transmission paths. The intent was to execute the model from
the perspective of a communicator who is attempting to estimate the possibility of
communicating with another HF site under a given set of circumstances. Although the

communicator does not have the advantage of using the sunspot number and K, index
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Figure 5. NATGEN coatrol cards used to model Kauai-Rarotonga path

tables for a current month, he should have a rough estimate of the current sunspot number
and K indices at any given time.

Figure 5 shows the four control cards used to execute NATGEN. Card one
is used to edit ionospheric parameters, and card two causes NATGEN to run the
ionospheric generator program. Card three defines the geographic latitude and longitude

)
of the transmitter and receiver; negative numbers indicate a west longitude or south
latitude. Following the location information are the year, month, sunspot number, and K
index. Card four indicates the beginning hour, ending hour and time increment.

Input streams were divided into one-day periods for the four-month study, with

each day represented by an average K, index. The values for sunspot number and K,

index were taken from the Journal of Geophysical Research [Refs. 4,5,6,7].
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D. RAYTRA

1. Overview

The raytracing program (RAYTRA) model can be executed in two modes,
puint-to-point and radar. The point-to-point mode, used in this thesis, performs raytracing
from a transmitter to a receiver. RAYTRA computes group times, phase times, signal
losses, the effects of sporadic E and elevation angles at both sites. These data are saved
for each successful propagation path and are passed to COMEFF.

The raytracing algorithm computes the propagation path based on data
produced by NATGEN. A raytrace which ends within 1000 km of the receiver site is
saved for further processing. When two rays bracket the receiver, the program
interpolates a ray that falls within some preset value, in this case ten kilometers. The
parameters describing this ray are saved for COMEFF. In the case where only a single
ray is found, the program again interpolates until a ray close to the receiver is found. The
AMBCOM User's Guide for Engineers [Ref.22: pp.35-56] pravides an in-depth treatment
of raytrace algorithms.

RAYTRA estimates the amount of absorption for each ray. The absorption
calculations are divided into four parameters as follows:

« L, is the divergence, i.e., free space spreading loss.

+ L, isionospheric absorption loss such as deviative, nondeviative, and auroral
losses.

+ L, is the loss resulting from sporadic E.

* L is the loss due to ground reflection along the path.
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The total loss for a path is the summation of all of these factors. A full explanation of

the RAYTRA path loss algorithms may be found in {Ref 22: pp.56-80].

2. Sporadic E Calculations

RAYTRA offers two choices for computing sporadic E (E,) The first method
computes the reflection of a signal for frequencies below the blanketing frequency (f,E,).
The blanketing frequency is computed based upon the location of the control point. The
second method performs E, reflection calculations for all frequencies less than f E,. The
value for f_E, is based upon the upper, median, or lower ITS f E, coefficients passed from
NATGEN. The choice of value is specified by the user. RAYTRA calculates fE,
dependent upon the percentage of E, specified by the user. If 90% E, is specified then
RAYTRA uses the upper decile value of fE, from the ITS file. For 50% E, RAYTRA

used the median decile value.

3. RAYTRA Input Variables
RAYTRA, like NATGEN, provides the user with a number of options for
controlling program execution. Options are specified with numbered control cards which
represent input streams following the program execution statement. Figure 6 1s an
example of the RAYTRA controlling statements used for this thesis.
Card two controls the amount of E, for a given execution. For this study, the
default vali 2 of 50% was used. Card two also allow the user to set the level of man-

made noise at the receiver. A residential or suburban seiting was assumed as a liberal
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Figure 6. RAYTRA input stream used to model Kauai-Rarotonga path

estimate of the noise environment.

Frequencies for RAYTRA are specified by control card three. Frequencies
from 4-64 Mhz were initially executed to model as closely as possible the SRI
experiment. Unfortunately, the antenna configuration pattern in AMBCOM only allows
frequencies of 3-33 Mhz to be transmitted, so the 4-64 Mhz input range always failed
to show propagation above about 40 Mhz. For the remainder of the study, RAYTRA

input was set to 4-40 Mhz, with successful propagaticn up to about 30-32 MHz.

E. COMEFF

1. Overview
The communications effect (COMEFF) prograin evaluates the quality of a

transmitted signal. NATGEN and RAYTRA dealt with the ionosphere and possible
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ionospheric effects along a given propagation path. The only site-dependent information
for those two programs were the site locations. COMEFF parameters include transmit
power, antenna configuration, signal bandwidth, and other communication site-dependent
data. Based upon these Jocal parameters and the data produced by RAYTRA, the
verformance of a particular communications link using a given frequency can be
characterized in terms of the signal-to-noise ratio (SNR), field strengths and doppler

spread.

2. Program Features
COMEFF uses the data generated by RAYTRA for all of the saved modes as
the basis for evaluation of a particular communications link. The raytrace descriptive
data, for each ray, includes:
. take-off angle,
«  group time,
. phase time,
. path loss,
. noise power (per 1 Hz),
+ arrival angle and
+  transmitter frequency [Ref. 22: p.112].
Multiple raytraces may be described for each frequency. COMEFF combines the effects
of multiple modes to produce a single recention statistic.
COMEFF allows the user to include the effects of the antenna configuration

on the communications link. The antenna data is taken from ANTLIB DAT, the
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AMBCOM antenna file. ANT726 was used as a Granger Associates vertically polarized
log-peiiodic antenna [Ref. 27].  Appendix A contains the antenna gain table for the
ANT726 antenna used at both transmitter and receiver in this thesis.

The COMEFF program provides a variety of output options. COMEFF will
calculate the SNR, gicup time, doppler shift, phase, and delay spread for all frequencies
specified in RAYTRA. Other options provide field strengths or analysis of signal quality
as bit error rate. All requested data may be printed in several formats which include a
listing of SNR, doppler shift, phase shift, and group times for each mode. COMEFF also
produces a single report that sums the data for each frequency at a particular time. The
SNR specified in the COMEFF summary report is a weighted accumuiation of SNRs for
all modes recetved from RAYTRA.

Weighted SNRs from the COMEFF summary report were compared to SRI's
propagation spectrum, which lacked specific SNR data. This composite SNR is calcuviated
by computing the power for each ray, combining these values and then subtracting the
noise value. The power A, for each ray is computed with the equation

A= (PGG,)/anL 10" L, (6)
where
P, = transmitter power (W),
G, = transmitter antenna gain,
G, = receiver antenna gain,
L, = path loss for the ith ray,

L, = receiving antenna loss,

25




¢ = speed of light and
f = frequency (MHz).
The composite SNR value is given by the equation
SNR = 10 log,,(ZA) - N,, @)
where N, is the noise power density in dBW. [Ref. 22: p.83] .
3. COMEFF Input Variables

Figure 7 i1s an example of the COMEFF input stream. Two control cards
control program execution. The first card specifies transmit power, and path loss
threshold. A bandwidth of 4 kHz and a transmitter power of 30 kW for SRI's sounder
transmissions results in 7.5 W/Hz. The path loss threshold excludes modes with a path
loss greater than the specified thresh:old. This parameter was set at 300 dB which
effectively allowed ali modes to be included. The second COMEFF control statement

specifies antennas.

$1  eesINPUT SETUP POR COMEPP
$1345678901234567690123¢5678901234567890122456709012345678901234567890123456709¢
$SET DEP DRAO:(AMSCON) .

$ASSIGN SYSSINPUT POROSS:

SASSIGN DKAO:{NCRINSTRY JWAVFORM.DAT FOR020:

SASSIGN DRAD: [ NCKINSTRY |CONOUT.DAT POROSS:

SASSIGN DEAO:(AMBCOM]ANTLIB .DAT FOR006:

SR DRAO s {AMBCON|CONEPP

RAUAT =RAROTONGA PATH 28 OCTOBER 1962

0 1. 2200 0 3 [} 7.% 0. 1300 1 0 0 1.0
ANT?26 ANT726 1
$S8T DEF {NCKINSTRY])
$EXIT )

Figure 7. COMEFF control input used to model Kauai-Rarotonga path
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III. THE SRI TRANS-EQUATORIAL LXPERIMENTS

A. GENERAL

From June through October 1962, Stanford Research Institute (SRI) operated oblique
incidence sounders on a 4800-km TE path from Kauai to Rarotonga as part of the test
instrumentation for the 1962 nuclear tests in the Pacific. Workers observed anomalous
propagation of HF modes from low HF into the VHF range across the TE path, and
noticed this as a nocturnal phenomenon, occurring between sunset and sunrise. The
propagation was unusual in that frequencies much higher than would usually be predicted
were propagated over very long distances. This occurred on over 80% of summer nights
and nearly 100% of nights during the equinoctial months. It was also observed that the
mode showed a slight inverse correlation with magnetic activity, appearing later on
magnetically disturbed days. The mechanism involved was believed to depend on field-

aligned 1onization and dip angle as it relates to the magnetic field symmetry. [Ref. 1}

B. THE EXPERIMENT

The observations made by SRI resulted as an outgrowth of the 1962 Pacific nucle.:
test series. Specific paths and equipment used were not selected specifically for the study
of TE propagation.

One path studied was from Kauai in the Hawaiian Islands to Rarotonga in the Cook

Islands. The two terminals of this 4800 km path are very nearly geographic and magnetic
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dip conjugates, with the magnetic equator very near midpath as shown in Fig. 8. The

great circle path is tilted about 10° from the magnetic meridian. This path will be used

for the PENEX trans-equatorial expenments. SRI workers used a Granger Associates

oblique-incidence <ounder transmitter at Kauar and a sounder receiver at Rarotonga. The
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sounders swept from 4-64 MHz at various time intervals. Peak-pulse power output was
30 kW, using pulse widths of 100 us (16 kHz bandwidth) and 1.5 ms (4 kHz bandwidth).
SRI used vertically polarized log-periodic antennas with 7-8 dB gain over isotropic and
a beamwidth of 110°. [Ref. 1: p.3]

The sounders operated from June through October 1962 providing data for all but
a few days of that period. Both the 100 us and 1.5 ms received signals were recorded
on 35-mm film and later digitized to punched card format for their statistical analysis.

[Ref 1: p.5]

C. ANALYSIS OF SRI DATA

1. Time/Frequency Behavior

The propagation frequency spectrum and the percentage of occurrence of
propagation on any frequency for one-hour periods are shown in Figs. 9-12. Percentage
occurrence is indicated by the length of the horizontal line. A line extending completely
across a one hour period indicates 100% occurrence during that month. Also shown are
sunrise and sunset times.[Ref. 1. p.6]

Figures 9-12 indicate that the VHF mode is a noctumal process, commencing
generally at sunset, although it occasionally appeared up to two hours before sunset. The
average onset time for July and August was 0500Z, and for October and September,
0340Z. It was observed that the normal (2F,, 3F,, M, etc.) modes gradually faded out as

the VHF mode appeared.[Ref. 1: p.6]
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Figure 11.

Propagation Spectrum, September 1962 [From Ref. 1. p.9]
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Propagation Spectrum, October 1962 [Fromn Ref. 1: p. 10]
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The equinoctial month of October (Fig. 12) reveals that propagation occurred
on almost all frequencies from 5-30 MHz nearly 100% of the time, save for two hours
after sunrise. Figure 12 also indicates nearly 100% occurrence for 50-64 MHz between
sunnse and sunset. Seasonally, then, September/October had a higher percentage of

propagation on most frequencies than did July/August.[Ref. 1: p.6)

2. Correlation with Spread F and Magnetic Activity
Geomagnetic activity, as influenced by solar flares and sunspot activity, is
known to influence ionospheric phenomena such as spread F. Figure 13 shows the
occurrence of the VHF mode on quiet and disturbed days for the summer months of June,
July, and August (Fig. 13a), and the equinoctial months of September, and October (Fig.
13b). The days were selected from the ten quietest and ten most disturbed days of each

raonth based on both K, and C, , the magnetic character. The curves of VHF mode

T T
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-
\ —
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1 — 1 1 4 S

(d] EQUINDCTIAL MONTHMS, 1962

Figure 13. Occurrence of VHF Mode on Quiet and Disturbed Days during the
Summer and Equinoctial Months of 1962 [After Ref. 1: p.14]




occurrence exhibit many of the same characteristics of spread-F occurrence. There is a
negative correlation with magnetic activity where onset time is earlier on quiet days than
on disturbed Also, seasonally, there are earlier onset times, a higher percentage of
occurrence, and longer persistence during the equinoctial months than during the summer

months.[Ref. 1. p.13]

3. SRI Conclusions

SRI concluded that only two mechanisms for long range TE propagation of
frequencies greater than about 30 MHz could explain their observed anomalies: super
mode propagation and the guidance of waves by field-aligned ionization. A super mode
would rely upon a pair of local maxima of ionization such as presented by the
geomagnetic or Appleton anomaly. This pair, occurring at + 20° magnetic latitude, allows
two 1onospheric reflections without a ground reflection. This super mode mechanism is
generally observed between 1200-2000 LT, SRI's TE anomalies were nighttime
phenomena, occurring at HF down to 4 MHz, so this was probably not the dominant
mechanism. Field-aligned i1onization at F-region heights, however, is an almost nightly
occurrence. To invoke this mechanism, the magnetic field symmetry seems critical -- the
dip angle must be just right. Since the terminals of the path were within sight of the
equatorial spread-F belt, good coupling into field-aligned irregularities would be possible

at altitudes above 200 km with reasonable take-off angles. [Ref. 1: p.33]
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. CONVERSION OF SRIDATA

Data from Figs. 9-12 were cinverted to surface contour plots for ease of comparison
with the AMBCOM predicted spectra. Data was taken from each figure at two hour
intervals since this is the interval for propagation chosen for AMBCOM's COMEFF
summary report. For each two-hour period. propagation was considered to have occurred
if the horizontal line which SRI used to indicate percentage of occurrence was greater
than 50% of the two-hour period. Since amplitude data was not available from Ref. 1.
contours were constructed for any level of observed propagation. Resulting contour plots,
representing the conversion data, are shown in Figs. 14-17. This data will be compared

with the predicted propagation patterns in Chapter IV.
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Converted Propagation Spectrum, July 1962
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Converted Fropagation Spectrum, September 1962
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IV. AMBCOM DATA ANALYSIS

A. ANALYSIS METHODOLOGY

AMBCOM's COMEFF program produces a summary table of composite SNR
values (in dB), weighted by amplitude of each mode, for all frequencies and times for
which calculations were desired.  Tigure 18 is an example SNR summary table for
October 9, 1962. Frequencies were desired from 4-40 MHz; time (GMT) was plotted at
two hour intervals. Only those frequencies which supported propagation are presented
as output. To produce the data necessary for comparison with the contour plots of the

known SRI data, a selectively sampled set of predicted data was desired. From each of

CASE ID: EAUAI-RAROTONGA PATE 9 OCTOXER 1962

Peo 0.7308001 wW/N2 BAUDe 0.1008-01 SEC, PLRKJe §.)0082+0) OO

22.00 9 199.%0 w BT, ¢, ~21.30 8 139.00 ¥ STe 0. 10 2.0 .2
TAX = ARTY2S REC » ANTTI$ 47 (OPTIOMAL) o SEAMVIDTE COARECTION
rREQ.

TI RB (GMuT)
L 2. 4. §. L 10. 11. 14. 16. 1. 20. 11.

PACE A A A AN N E T EaS e r S AR P NANANRal S o NS cECEe VAR SRS RuNUUrSEEaVSRIPFaPseBEe

4.
N 4. 1. 4. . o, 47, 47. 4.

[ 7. 3. 46. $0. 7. 47. 4. 3. 3.

10. 7. 2. 44, 4. 2. 2. $i. 1. 1. 32. 14. ‘.

12. 19. 31, 2. $0. $3. $). $2. “". 4. 1. 7. 30,

14. 36. 3. 4@. 9. 3. 34. 37. 19. n. 36. 2.

16. 18. 17. 1. 4. $2. 9. ”. 3. 33. 3,

18, 44, 4. 47. 2. 4. 40. 47. . 3. M.

0, 43, 4. 4. 4. 4. 4. 8. 7.

1. 44. 4", 4. 46. 10, 4. 30. .

. 43. 4s. e, 4. 19. 4.

6. 0. 1. 4. 4. 4. 3. 3.

10. 4. H 2. 40.

30. 37. 3. 42. 4.

J2. 14. 37.

M. 3. 19.

3. 9. 8. ).

Figure 18. Example SNR table output from COMEFF
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the four month's SNR data, the five days exhibiting the most magnetically disturbed
character (D in tables of Appendix B) and the five days exhibiting the quietest magnetic
character (Q in tables of Appendix B) were grouped separately as samples. SNR values
of each month's disturbed days were averaged as were each month's SNR values for quiet
days.

An appropriate graphical presentation of the mean SNR values was considered to
be a surface-type contour plot, as other three-dimensional graphs, such as histograms,
failed to display necessary detail of the data. Data was often not continuous in nature

and trends were best observed in the contour plot format.

B. PREDICTED PROPAGATION PATTERNS

Figures 19-26 are contour plots of the mean values of SNR for the disturbed and
quiet days for July, August, September, and October 1962. SNR values were grouped in
ranges of ten dB; the corresponding contours are shaded with the highest values for SNR
displayed darkest. Comparison of these plots with the converted propagation spectrum
plots in Chapter three (Figs. 14-17) reveals that AMBCOM poorly predicted observed
propagation for all months. However, some trends can be discemed that correspond with
SRI's observed trends.

1.  July Contour Plots

AMBCOM failed to predict propagation at 4 MHz for all months and only

rarely above 32 MHz. It was noted (Figs. 19,20) that AMBCOM failed to predict any

of the observed propagation (Fig. 14) between 0500-1600 GMT. The trends before sunset
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at 0450 GMT and following sunrise at 1645 GMT are predicted fairly well; however, SRI
did not observe the predicted propagation at 30-32 MHz around 2400 GMT.
2. August Contour Plots

Predicted propagation for August (Figs. 21,22) extended to higher frequencies
(up to 38 MHz) around 2400 GMT. Again, this was not observed by SRI (Fig. 15) The
typical null in propagation just before sunrise (1640 GMT) is correctly shown on both
predicted and actual plots. Figure 21 for the disturbed August days indicates an erratic
patch of propagation at 1800 GMT from 20-22 MHz that SRI also observed. The large

area in Figure 15 showing propagation up to 33 "z from 0500-1300 GMT is not

predicted by AMBCOM.

3. September Contour Plots
With the equinoctial manths, SRI observed (Fig.16) almost complete
propagation. AMBCOM, while indicating much more extensive propagation (Figs. 23,24).
fails to fully predict such strong propagation. Erroneously, AMBCOM predicted

propagation from 2000-2400 GMT up to 40 MHz, while SRI did not note the same

behavior.
4. October Contour Plots
Again, SR1 observed nearly complete propagation from 4-40 MHz for the
equinoctial month of October (Fig. 17) with a null around sunrise (1620 GMT).

AMBCOM predicted this gap (Figs. 25.26), but failed again to predict the propagation

from 30-40 MHz.

43




157

nh

7 s

ig'.

i

=t 20
b A

16

14
12

o~

== 10

8

g g _

< i

6

Time (GMT)

0 2 4 6 8 10121416 18 20 22 24

4

Frequency (IVMhz)

Figure 19.

Predicted Propagation Spectrum, July 1962, Disturbed
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V. CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

A number of conclusions were reached during this study, as listed below:

The bibliography provided at the end of the thesis provided a good background
about TE propagation effects.

The SRI sounder TE data were very useful in obtaining an understanding of
TE propagation modes for a magnetic conjugate path. The presence of
unusual nocturnal modes were shown to exist.

This data provided an excellent basis for the comparison of predicted
MUF/LUF values to observed MOF/LOF data.

The SRI data lacked the amplitude information needed for a full evaluation of
a TE path for PENEX purposes.

The comparison of predicted values with observed values indicated significant
differences. especially during nighttime hours. This would be expected since
the AMBCOM prediction program, and other prediction programs, do not have
a routine for the observed TE modes.

While ANT726 from AMBCOM's ANTLIB DAT 1s a vertically polarized log-
periodic anienna [Ref. 27], its antenna pattem probably differs from that used

by SRI, resulting in differences between predicted and observed data.
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B. RECOMMENDATIONS

The AMBCOM program is now available from SRI on PC-based software. The
author has not had the opportunity to use this new product. Currently, input control
parameters must be located in specific columns, and no data entry programs exist to assist
the user in entering these parameters. If data input were changed from the old control
card approach to an interactive format for data entry, the program would be much easier
to use. Additionally, graphical output displays should be added.

Since sizeable differences were found between the predicted and measured results
for this TE path, it 1s recommended that prediction programs such as AMBCOM,

PROPHET, and IONCAP be modified to include the observed TE modes
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APPENDIX B. GEOMAGNETIC AND SOLAR DATA TABLES

The data contained in the following tables 1s compiled monthly in the Journal of
Geophysical Research as Geomagnetic and Solar Data, J. Virginia Lincoln, Editor [Refs.
4.7). Last column annotations denote Q/q - 10 quiet days, Q - S quiet days, D - §
disturbed days.

Table II. GEOMAGNETIC AND SOLAR DATA, JULY 1962

Kp (3-hour intervals) Sum JAve.

Doy ) 2 3 4 5 6 | 7 8 Kp | Kp | R | /D
1 20 | 20 3. 30 | 2+ 2+ 2 20 | 180 ] 23 | &

2 2+ 10 20 | 20 i- 2- 3- 3o {154 19 | ¥

3 3 10 2- 20 20 3 2+ 1+ 16 2 381 g |
4 20 4- 30 2+ 3+ 20 | 4+ 5 | 25+ | 32 30 )
] do | 40 | 40 | 30 | 2+ 2+ 3+ | 2+ ] 24+ 3 26 D
6 3+ 30 3 4- 20 2- 2+ |20 2)-] 261 2

7 10 1- 1- 2+ 2- 2+ 30 3+ 1501 1.9 21

8 20| 30 | 3% |2+ ] 20202+ | 30} 20 25 16

9 2+ 20 | 20 1+ i- ]- 1+ 2- | 120] 15 10 Q
10 20 10 1+ O+ 3o M 20| 201151} 19 13

i 20 2 3 20 3- 2+ 3- 2+ ) 18+ 23 19

12 1o | 3o | 2+ [ 20 | 20 | 20 1+ 1+ 1 150 1.9 11 G
13 Kle] 1+ 2 1+ 3- 3- 30 30 19- | 2.3 29

14 kfo) 3 3. 2- 2- 2+ lo ! 20 ] V70| 21 33

15 J3do [ lo] 1- [ 1- 1 1- ] 1+ ]2 2 }llo] 14] 21 ] g |
16 20 1+ | O O+ 10 { O+ | O+ | OO [ 07 | 26 Q
17 O+ O+ O+ O+ 1- O+ | O+ 10 4- 1 05 | AN Q
18 1+ 1- 1- 1. 1+ 1- 20 10 { 8+ 1 9 Q
19 1+ 2+ | 20| 30 | 2+ 1+ | 3+ 3- [ 18+ 23 8

0 3+ 40 | 40 3- 2+ 3 3 20 | 24- 3 14

21 3o 3 2- 3- 20 30| 2+ | 3o | 21+ | 27 | 23

22 30 | 20 | 2+ 2- 1- 1+ 1+ [ 20 J 14+ | 1.8 | 23 q
23 10 | 2+ 3o | 20 1+ 1o | 3 2- 16~ 2 17

24 2+ 10 10 1. 20 | 4+ 5 | 40 ) 200] 25 ] 13

25 5 4+ 3+ 2+ 2 1- lo | 2+« J 20+ | 25 K]

26 & o & & | 50 | 3+ | 4+ | 4+ ] 37+ ] 47 9 D
27 50 4. 3+ 3- 40 | 5 3- | 40| N1-| 38 9 D
28 4- 4- 40 3- 3o 4 2¢ 3- ] 26| 3.2 9 3]
2% 4 2- 3o | 2 + 3 1+ 2 | 176 | 2.1 8

| 2 3- 20 | O+ }- 1- 1- 1+ ] 10+ 1.3 7 Q
3 1 1. T« T T+ 1T 7 20 | 4+ | 4+ ] 15+ 91 0
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Table III. GEOMAGNETIC AND SOLAR DATA, AUGUST 1962

Kp (3-hour intervals) Sum | Ave.
2 | 31 aT s 6171 8 lkplkp
50 | & 5 60 | 4 | 30| 30| 40 ] 35 | 43
3+ 130 ] 1o | 2+ | 2+ | 2+ 2+ | 201 19-] 23
20| 3 3 2- 3 3 3 3120125
1o | 20 | 2+ 2- 2- 2- 2+ 1+ | 140 | 1.8
20 | 20 3. 30 | 20 2- 1+ 1- J15+1 19
30{ 3+ { 40 | 30 | 4 3+ 3- 3+ 1 26+ | 33
40 30 2+ 2+ 30 4- 5 4+ | 27+ 1} 35
50 | 40 | & 4+ | 40 | 4o 3- 4+ | 33+ | 4.2
5 3+ | do | ¥+ | 30 | 2+ 3- 1 3o 26+ 33
3o 3 3+ 2+ 2+ 3 10 10 | 18+ ] 23
1- O+ | O+ - | O+ - | Do) 40| 05
O+ 10 1- 2- 2- O+ 0+ lo ]l 70 ] 09
]- 1 10 1+ 1- O+ 10 | 3+ 90 1.1
2+ | 2+ 10 2- 2+ 10| 3o 3+ 170} 2
3- 5 5 | 3+ | 20 3. 3- | 401270 34
50 ! 3+ | 40 10 | 1+ 2- 4- 5 1251t 31
4+ | 3+ | o | 30 | 3+ 4- 4- | 50 | 29+ | 3.7
3+ | 4+ 5 KE 3+ 4- 2+ | 3+ ] 28-] 35
4+ 4+ 3+ 3+ 3 2+ 20 2+ 1 25 | 3.1 |
2- 1- 10 14 2- 10 1- 2- 10- ] 1.2
20 1- 1. 10 10 2~ 1+ 4- 120] 15
40 | 5+ | 2+ 3 3- 5 5 | 32 4
3+ | 30| 3+ | H+ | 3+ | 0| 3 126132
30 | 4+ | 3+ | 4+ | 3+ | 2+ | 4 ) 28-1| 35
3 3o [ 2+ { 2 3 20 | 3+ 1 220] 28
2+ 2+ 3- 2+ 10 ol loj 152 ] 19
2+ | 20 ] 2+ | O+ | O+ 1- 10 ]- 10-1 1.2
1+ | 20 1- 2- 2- 1« | O+ ; O+ o+ 1.2
10| 30| 3+ 4- 3- 3 3+ | 3+ } 230} 29
2+ | 3o 3 2- 4- 3. 4- 20 } 22- | 27
5 S 1 5+ 4- 3+ 14 3 ] 20 1 28135

0
|

e Y Pt e et et P Rl o B o 2 N TR LI B U
Q

/D

10 10

DD

oo |®

e gl

Dolo

Fam;vuzsssxgaaagssxaooomo:zawwda
O

SRS N IS
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Table IV.

GEOMAGNETIC AND SOLAR DATA, SEPTEMBER 1962

Kp (3-hour intervals) Sum | Ave.
Doyl 1 2 3 4 ) 6 1. 7 8 ] Kp | Kp | R | Q/D
] 3+ | 2+ 5 40 | 40 | 50 5 40 | 320] 4 48
2 30| 5 5 5 & 42 | 4+ | 3+ | 34+ ] 43 | 57 D
3 40 | 5+ 4- 5+ | 40 | 4o & 6+ 138+ | 48 | &1 D_|
4 &5 & 4+ 5 40 | 50 4- 30 ] 350 ] 44 | 88 D
5 10 1 3+ | 40 | 3+ 3o 4- 3- 30 | 240 3 90
6 4- 40 | 50 | 4o 3 20 | 30 | 3+ | 28-1 35 1 82
7 4- 4- 40 30 3- 1+ 20 1+ 22- | 2.7 YAl
8 3+ | 40 | 40 | 30 2- 20 10 2- 2- 1 26 | 59
9 ¥ |30 V-1 2 | 2+ | 201 30 | 3+ |19 24 ] 58
0 J 34| & [30] 2 [ - -lT1wop17-]21] 4] q
11 2+ 1+ | 2+ 4- 1- 1- 2- 11519 511 g
12 3 30 | 7+ | 5 4- 5 7- & 1 39-] 48 | 62 [»)
13 40 | 3+ 4- 3- 30 | 4+ 50 20 J280)] 35|
14 3o | 30 | 40 2- 10 2- 20 | 2+ 19- | 23 | 83 Q
15 3o 4- 40 K 1- 2+ 3+ | 30§ 23-4y 28| &0
16 2+ 3- 1- 20 | 20 2- 30 | 3+ | 18- | 22 1 42 Q
17 20 3 2+ 1+ | 20 1+ 2- 20115+ 1 19 | 33 Q
18 2- 1- lo et 1ol 1ol 1+ | 3 T10+] 13 3] Q
19 30 | 4+ & 40 | 3+ | 4+ | 60 5 J 35+ 44 | 24 D
20 5 3+ | 2+ 4- 2+ 1. 10 1- 19- 1 23 [ 24
2] 20 K 3 2- 30 4- 3 3 1210 26 ; 32
2 40 | 4- 3o | 4o 4- 4- 4- 2+ | 280 ] 35 | 32
23 3+ | 4+ | 30 | 3+ 1+ 10 1+ | 2+ 12001 25 | 4
24 2+ | 30| 1o ] O+ 1- o+ | 20 2- ]I el 14| 84 Q
25 O+ 1- 1- 2- 2- 2+ 2+ 3- 13- 1 16 | 83 Q
26 5+ 6 I | 20| 3+ | 5+ | 40 | 2+ J 31+ ]| 39 | 85
27 30| 2+ | 20 | 2+ 3 20 | o 2- 1 V0] 21 51 Q
28 3 14 1- 10 2+ 3. 2- 3+ 16 2 47 Q
29 200 | | 30| 3 2+ | 2+ 3+ S+ 1 250 ] 31 36
30 40 1 4+ | 3o 3- 3 1l 2 | 2 | 1+ 221271 4
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Table V.

GEOMAGNETIC AND SOLAR DATA, OCTOBER 1962

Kp (3-hour intervals) Sum | Ave.
Day|] 1 2 3 1 4 5 6 7 8 Kp | Kp | Rz | /D
| 3+ 44+ | 50 | 650 | & & o & | 3Bo] 48 | & D
2 4+ 4- 5- 4. 4- 4+ 3 1+ | 28+ ] 35 35
K] 2- 2- 4- 2+ 3+ 2- 2- 3- 1200} 28 ¢+ 22 qQ
4 2+ 3+ ; 30 ] 20 }- 2+ | 20 3- 118+ 23 ! 18 Q
5 10 | 2- 1+ 1o | 1+ 3- 5 3+ 170! 211 13 qQ
6 5 4- 4+ 10 | 3+ K O+ 2+ 22+ 1 28 | 25
7 2+ 3+ 1+ 20 1- 1+ 3+ 4+ | 19- 1 23 | ¥ q
8 &+ 4- 3+ 4+ 3+ 5 40 40 | 34- | 42 a0 D
9 & 4+ 5 4- 4+ | 40 | 30 4- | 33+ ] 42 | 42 D
10 4- 3+ 3- 3+ 5 4- 4+ 3 128+ 35 | &
11 4- 50 | 4+ 3+ 4- 30 4- 3+ | 00| 38 | 63
12 3o | 2+ | 2+ 4- 2- 1+ 1- 1- 146 2 63 Q
13 1- i+ 1+ 3+ 4- 3- 2+ 30 18+] 23 | 74 q
14 40 | 4+ 5 5 40 | Jo 5 4- 1 330 ] 41 67
15 Ka 3¢ | 2+ | 3 2- 3- 1- 20 § 180 23 | 62 Q
16 3 20 | 20 6 40 | 20 4- Jo 1 250 ] 31 51
17 3+ 2+ 3- 20 1- 0o 10 1+ | 13+ | 1.7 43 Q
18 5 5 2- 1+ 2- 3+ 30 1+ | 22-1 27 | 33
19 O+ | 0o | 50 | 5 5 50 4. 4- 127+ 1 34 | X
2 20 | 20 | 2- 10 3- 3- 30 4- 19- 1 23 | 28 q
21 4- 3+ | 2+ | 2+ | 20 4- 30 | 20 J 22+ ] 28 | ¥
22 2+ 4- 30 | do 44 3+ 3+ 5 29- 1 36 | 4
23 | 50 | 40 | 30 4- 3+ 4- 30 [ 3+ 1290] 36 | &
24 30 4- 3- 30| 40 | 5 5 | 31-] 38 | 4
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